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Renormalization Group Theory for Fluids to Greater
Density Distances from the Critical Point1

J. A. White2, 3 and S. Zhang2

A recently developed renormalization group ( R G ) theory for fluids begins with
an expression for the free energy for repulsive interactions only, then employs
an RG procedure to take into account contributions to the free energy that
come from fluctuations of all wavelengths in the presence of attractive inter-
molecular interactions of limited range. The theory has had some success in
describing volumetric properties of real fluids at the critical point and out to dis-
tances within approximately ±50% of the critical point density. In the calcula-
tions, the density dependence of the radial distribution function for the repulsive
interactions was ignored. The theory has now been modified to take that density
dependence into account. Predictions of the theory as thus amended are com-
pared with volumetric measurements made in argon near the critical point tem-
perature for densities from zero to more than twice the critical point density.

KEY WORDS: Critical point; density fluctuations; nonuniversal thermal
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1. INTRODUCTION

In two previous papers [1,2] the authors have developed a renormaliza-
tion group (RG) procedure for treating volumetric properties of fluids. The
theory begins with an expression for the free energy of a gas of molecules
that interact with steeply repulsive forces only. It then uses RG methods to
take into account contributions to the free energy that come from attrac-
tive interactions among the molecules. Because those interactions have a
limited range, they result in density fluctuations that can be substantially
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larger than would be predicted in a mean field approximation. Calculation
of the enhancement of fluctuations is difficult because fluctuations of many
different wavelengths interact with one another. RG methods were
developed initially to treat such interactions for fluctuations whose
wavelengths are all asymptotically long compared with the range of the
attractive forces. Extensions of those methods were proposed in Ref. 1 to
treat shorter wavelength fluctuations, down to the shortest that make
appreciable contributions to the free energy. Extensions of the theory were
proposed in Ref. 2 to make it possible to predict the location of the critical
point and other aspects of nonuniversal behavior for given intermolecular
potentials. A limitation of the theory as developed in Refs. 1 and 2 was the
lack of any allowance for changes of the pair correlation function for the
repulsive interactions as one moves away from the critical point. A method
is proposed here for treating effects of this changing density distribution
function in carrying through the RG calculations.

2. RENORMALIZATION METHOD

The free energy calculated for repulsive interactions only is assumed to
account fully for density fluctuations of the very shortest wavelengths.
Those fluctuations are little affected by the less rapidly varying attractive
interactions; the attraction is averaged over the short wavelengths of the
fluctuations. For fluctuations with longer wavelengths, the steeply repulsive
interactions are too abrupt to affect their amplitudes greatly, but the
attractive wells have a big effect. The renormalization procedure [ 1 ] begins
with the shortest wavelength fluctuations that are affected appreciably by
the attractive wells, then adds contributions from successively longer
wavelength fluctuations. Mathematically, after taking into account all fluc-
tuations with wavelengths shorter than some As, the grand partition func-
tion for the fluid contained within a domain Q of volume V(Q) and chemi-
cal potential u is expressed as [ 1 ]

The summation is taken over all fluctuations ps(r) containing (only)
wavelengths longer than As. The ps(r), which appears also in the exponent,
includes the constant (nonfluctuating) component of density, p. In the
exponential, the first term gives BuN, where B = 1 / ( k B T ) , and N is the total
number of molecules in Q when the number density is given by p s ( r ) . The

fs(T, ps) is the portion of the local Helmholtz free energy density [a func-
tional of yO s(r)] that includes all contributions from fluctuations with
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wavelengths A < A S . And Us, which includes the factor grepulsive(T,ps, r), is
the contribution to the free energy in Q, when the density is given by p s(r),
that is made by the potential energy of attraction among the molecules in
the fluid, canonically averaged over the shortest wavelength fluctuations,
the fluctuations associated with the steeply repulsive portions of the inter-
action potentials.

The calculation now proceeds by summing first over all fluctuations
with wavelengths between AS and a longer wavelength, A1. The result can be
expressed as

where pD — Ps — p1 is the portion of ps that depends on wavelengths
between As and A1, and p1 is the portion that depends only on wavelengths
A>A1. In the exponents, fD is shorthand for f D ( T , p1, pD) = fs(T, ps) —
fs(T, p1,), where fs(T, p1) is the portion of fs(T, ps) that does not depend on
pD [obtained from fs(T, ps) by setting pD = 0], and analogously, UD =
Us— U1, where U1 is the portion of Us that does not depend on pD. The
s f t ( T , p1) is an increment of local free energy density that can now be
added to fs(T, p1] to form a new—"renormalized"—function f1(T, p1) for
use in an expression for the grand partition function that requires summa-
tions only over the remaining fluctuations, those with wavelengths A>A1:

In the phase-space cell approximation used in Ref. 1, essentially that
of Wilson [3], one sets A1 ~ 2As and treats the pD as wave packets. They
are taken to be coherent inside a volume KD within which the variation of
p1 can be neglected, and incoherent outside that volume. Designating
within VD the amplitude of the fluctuations pD by x and writing
UD= VDuD, one then obtains from Eq. (2)

where
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The Q0(T, p1) arises from the conversion of the summation over pD(r) to
an integral over x, and can be treated as substantially constant (only) when
T and pl do not change much, as when one is close to the critical point.

For a two-body potential, when one has reached wavelengths As that
are long compared with the range of the potential, the potential energy
density uD has a large portion proportional to x2 and independent of As

and a smaller portion proportional to k - 2 x 2 . In that long wavelength limit,
when one is sufficiently close to the critical point so that Q0(T, p1) can be
treated as a constant, one makes contact with previous RG treatments.
Specifically, when fD is written as

then, if fs(T, ps) is assumed to be a symmetric function of the density
distance from the critical point density, Eq.(4) yields the familiar near-criti-
cal-point recursion relations of Wilson and of Wilson and Fisher [2-4],
independently of the numerical value of Q0.

We are also concerned here with behavior when not near the critical
point, and also when near the critical point for wavelengths Xs that are not
asymptotically long. We thus need to know how Q0 varies with tem-
perature and with density distance from the critical point, and also its
numerical value at the critical point. (The latter information is required in
order to determine the location of the critical point, rather than to be
limited to a theory of how thermal behavior varies as a function of distance
from a critical point whose location remains unknown.)

To determine how Q0 changes as one moves away from the critical
point and also its actual value at (Tc, pc), one can use the fact that in the
mean field approximation, and also when As is sufficiently small compared
with the range of the attractive potential, the uD in Eq. (4b) is negligibly
small and makes no contribution to f1(T, p1). Mathematically, then

f l ( T , p 1 ) = f s ( T , p l ) , i.e., d f 1 ( T , p 1 ) = 0. According to Eq. (4a), the corre-
sponding Q D ( T , P1) is simply equal to unity. Thus, Q0(T, p1) equals the
reciprocal of the integral in Eq. (4b) when uD = 0. Designating the QD for
uD = 0 by QD,LR , where "LR" refers to the attractive potential assumed to
have a range that is sufficiently long compared with As so that to good
approximation uD = 0, then Eq. (4a) can be rewritten equivalently as

The argument of the logarithm is now the ratio of two integrals, in which
the common factor Q0(T, p1] cancels out. The result in Eq. (4c) takes into
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account the Q 0 ( T , p 1 ) that enters in Eq. (4b), including its dependence on
T and p; the increments sf1 given by Eq. (4c) arc fully determined (not just
to an unknown constant multiple) once one specifies the averaging volume,
VD, the central wavelength AD in the wavepacket pD, and the inter-
molecular potential [which determines the HD that appears in Eq. (4b)].

3. NEW CALCULATIONS

In the calculations that follow, the Us in Eq. (1) has been expressed as

Here U2 is one-half of the attractive part of the pair potential, and
grepulsive is the pair correlation function for the repulsive part of the potential.
We assume spherically symmetric U 2 ( r ) = U 2 ( r ) , and grepulsive(T, ps, r) =
grepulsive( T, ps, r). If the range of U2(r) were sufficiently short compared with
all wavelengths contained in ps, then, within a domain Q' within which ps is
constant, the energy density uS = U s / V ( Q ' ) would be given by

Within a larger volume VD> V(Q'), fluctuations pD of amplitude x
would then yield for uD, analogously to Eq. (5) for fD,

Here the subscript "SR" to uD refers to the requirement that the
attractive potential U2 be sufficiently short-ranged that it can be treated
within VD as a local potential.

When the averaging over density variations within the actual,
extended range of U2 is taken into account, UD is smaller by a factor
(1-D),

where D is a number between zero and one. For a simple sinusoidally
varying density fluctuation of the form pD = p 0cos(k.r + o), and grepulsive

evaluated at density p, the factor (1 — D) is given by
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where

is the cosine Fourier component of U2(r' — r) grepulsive( T, p, r' — r), and
U 2 , 0 / V ( Q ) =—a(T, p). In calculations to follow, the density p used in
grepulsive in Eq. (9) has been taken to be the average density p in V(Q).

In our earlier work that focused on behavior closer to the critical
point [1,2], a simplifying approximation was made. It is equivalent to
replacing everywhere the actual grepulsive(T, P, r) by grepulsive(Tc, Pc, r), and
the product U2(r) grepulsive(Tc, pc, r) by a temperature- and density-inde-
pendent "effective" U2(r). When this is done, it is easily verified that
Eqs. (6)-(9) above yield Eqs. (10) and (11) in Ref. 1, with the a(T, p) in
those equations and in Eq. (14) replaced by a = a(Tc, pc) = const. In the
present investigation this simplifying approximation and the further
approximations expressed by Eq. (12) and the choice D0 = 1 in Ref. 1 were
not employed.

4. RESULTS FOR ARGON

Equations (4)-(6), (8), and (9) were evaluated numerically for the
square-well potential U2(r) and for hard-sphere grepulsive(p, r) given in
tables published by Throop and Bearman [5] for values of pa3 in the
range 0 to 1.1 (a = sphere diameter). After choosing parameters of the
square-well potential (its depth and inner and outer boundaries), numerical
results were obtained upon making decisions about the size of the
coherence volume VD, which appears in Eqs. (4), and the fluctuation
wavelengths AD = 2n/k employed in Eq. (9b). For the work reported here,
wavelengths AD were chosen to be multiples tn (f = 2.0; n = 1, 2, 3,...) of a
reference wavelength 1D0 = yRa (Ra = range of the attractive square-well
potential), with y=1.04; and the coherence volume VD was chosen for
each AD to be of size KD = (zAD/2)3, with z = 1.12. [For wavelengths
1 = /"1DO, with n = 0, — 1, —2, — • • • , i.e., as small as or smaller than ADO,
fluctuation contributions given by Eq. (4) can be expected to be negligible,
resulting from the then rapid oscillation of cos(k.r) in Eq. (9b).] From
theoretical considerations one can expect best choices for y and z to be
close to unity. It was not possible at this time to determine y and z more
exactly from theory, so they were assigned the somewhat arbitrary, empiri-
cal values given above.

Results using the approach just described for these values of y and z,
when the square-well parameters were adjusted to give the correct critical
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point (Tc, pc, Pc) for argon, are illustrated in Figs, 1a and b for the two
measured [6] argon pressure isotherms closest to the critical temperature.
The root-mean-square deviation (perpendicular distance between the
experimental data point and the theoretical curve) for all of the data is less
than 0.5% (to be exact, 0.41 %), with maximum absolute deviations of less
than 1% for these two isotherms (maximum deviations were +0.84 and
— 0.79%). Theoretical curves calculated without any fluctuation contribu-
tions [Eqs. (4a) and (4b)], i.e., calculated at the same temperatures in
mean-field approximation, deviate from the experimental points at some
densities for argon by as much as 69% (rms deviation 25.4%; greatest
deviations are at densities about 35% larger than critical), with deviations
of 20% or more for densities in the range of approximately 0.9 to \.lpc.
[This illustrates the size of the aggregate contribution of the fluctuations

Fig. 1. (a) Calculated pressure isotherms for argon at
temperatures T,= T/TC= 0.9986 and 1.0152 (solid lines)
compared with measurements by Michels et al. [6]. (b)
Deviations (perpendicular distances) between the measured
data points and the calculated curves; deviations are also
included for out-of-range data not shown in a, at measured
p/pc, P/PC equal to {2.03,4.35), (2.14, 6.23) for T, = 0.9986,
and (2.02,4.72), (2.13,6.64) for Tr =1.0152.



resulting from deviations of the attractive potential from the constant depth
potential well assumed in the mean-field approximation. The situation is
essentially that shown previously in Fig. 1d of White [7] (difference
between dashed and solid lines), where calculations were performed using
a less accurate approximation.]

The calculated results for argon presented in Figs. 1a and b assumed
a square-well of depth c/kB = 86.8 K, an inner diameter of a — 3.208 A, and
a range parameter R=1.73. Values quoted in the literature (based on
fits to second virial coefficients measured at low densities) in the above
units for e/kB and a include ( e / k B , a, R) = (69.4, 3.162, 1.85) quoted by
Hirschfelder et al. [8] and (93.3,3.067,1.70) found by Sherwood and
Prausnitz [9]. Although these sets of values look rather dissimilar, they
lead to rather similar energy-volume products for the attractive parts of
the potentials; and the weighted average (86.1,3.096, 1.745) of these two
sets (30% [8] plus 70% [9]) all lie within 1 to 4% of the
(86.8, 3.208, 1.73) used for Fig. 1. Better agreement probably should not be
expected, among other reasons because effective molecular diameters
change appreciably over the wide range of temperatures used for the
second virial coefficient fits.

5. CONCLUSION

Our earlier work that ignored the density variation of grepulsive( T, p, r)
in the RG calculations exhibited increasingly large deviations between
theory and experiment for densities farther than about 0.5pc from the criti-
cal point [2]. A procedure has been proposed here [Eqs. (6)-(9)] for
incorporating the temperature- and density dependence of grepulsive into the
theory. A test against experimental data for argon suggests that this proce-
dure results in substantially improved agreement for densities farther from
critical, down to zero density, and up to somewhat greater than 2pc.

A recent review [10] discusses in detail an alternative to the present
approach for treating the liquid-state and critical phenomena and includes
some background discussion and an extensive list of references.

REFERENCES

1. J. A. White and S. Zhang, J. Chem. Phys. 99:2012 (1993).
2. J. A. White and S. Zhang, J. Chem. Phys. 103:1922 (1995).
3. K. G. Wilson, Phys. Rev. B 4:3184 (1971).
4. K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28:240 (1972).
5. G. J. Throop and R. J. Bearman, J. Chem. Phys. 42:2408 (1965).

1026 White and Zhang



6. A. Michels, J. M. Levelt, and W. DeGraaff, Physica 24:659 (1958).
7. J. A. White, Fluid Phase Equil 75:53 (1992).
8. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids

(Wiley, New York, 1954).
9. A. E. Sherwood and J. M. Prausnitz, J. Chem. Phys. 41:429 (1964).

10. A. Parola and L. Reatto, Adv. Phys. 44:211 (1995).

Renormalization Group Theory for Fluids 1027


